Latent factor models for credit scoring in P2P systems
نویسندگان
چکیده
منابع مشابه
Using DEA for Classification in Credit Scoring
Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...
متن کاملCredit Risk Scoring Models
Credit scoring models play a fundamental role in the risk management practice at most banks. They are used to quantify credit risk at counterparty or transaction level in the different phases of the credit cycle (e.g. application, behavioural, collection models). The credit score empowers users to make quick decisions or even to automate decisions and this is extremely desirable when banks are ...
متن کاملNeural network credit scoring models
This paper investigates the credit scoring accuracy of "ve neural network models: multilayer perceptron, mixture-of-experts, radial basis function, learning vector quantization, and fuzzy adaptive resonance. The neural network credit scoring models are tested using 10-fold crossvalidation with two real world data sets. Results are benchmarked against more traditional methods under consideration...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica A: Statistical Mechanics and its Applications
سال: 2019
ISSN: 0378-4371
DOI: 10.1016/j.physa.2019.01.130